REGARDING COVID-19: Hoosier Pattern has decided to limit face to face meetings with customers and visitors and will be heavily utilizing the use of teleconferencing and web meetings with customers until further notice. It is our goal to not only keep our employees safe but to keep visitors safe by limiting contact.
3D Printing News

Prototyping with Sand Printing

Creating Prototypes with Sand Casting 

The process of sand casting has been the same for hundreds of years. First, a pattern is placed in sand to create the mold and a gating system of some type is incorporated for the molten metal to flow into the mold. The pattern is then removed and the cavity is filled with molten metal. After the metal has cooled, the sand is broken away and the casting is removed.

Although Hoosier Pattern started as a traditional pattern shop—machining and building these patterns while becoming an industry leader—there was more to be explored within the sand casting world. Patterns are reusable and perfect for production use, but what about low volume productions or prototypes?

Back in 2013, Hoosier Pattern bought their first 3D sand printer, expanding their capabilities to more than just hard tooling. Five years later, Hoosier Pattern now has three sand printers in house and is more equipped than ever to provide prototypes.

How It Works

The 3D sand printing process is fairly simple and works as a normal 3D printer would. A CAD file is plugged into the machine and a layer of sand goes across a large job box (70.9 x 39.37 x 27.56"). Binder is then dropped where the part is to be made—the binder joins the sand together and, after layers of this repeated process are bonded together, the mold is formed and extracted from the job box. The created mold is then cleaned and sent to the foundry to be poured within 10 days of receiving the purchase order.

Benefits to 3D Sand Printing

There are two big benefits to 3D printing prototype molds and cores—cost and time.

Traditional pattern making is expensive and it can take months to get your first casting and maybe realize it's not even what you want. Under strict timelines, this may only give engineers and designers a couple of tries to get it right. With 3D printing, a customer can have a casting in a matter of days if needed. Depending on the size of the mold or core, multiple versions of a prototype can be printed at once in the same large job box and sent to the foundry together for maximum use of time.

Hoosier Pattern's method of 3D sand printing allows a customer to print multiple versions of the same prototype at the same time because we aren't committed to tooling. Within a short amount of time, multiple designs can be printed, poured, and tested, allowing for additional alterations or decisions to be made on even a shorter timeline.

Manufacturability is another gain when it comes to 3D printing. Designers are free to castings made true to design and designs don't need to be altered or compromised by manufacturability. Complex cores that would normally need assembly can be printed as one piece. Cores can also be printed with a hollow interior, allowing gas to escape or a core to collapse if need be—this achieves high-quality internal passage systems for castings.

Additionally, 3D printing has the potential to highlight issues that—in situations of traditional tooling—may not normally come up until the molds are moved into production. Finding these issues earlier in the timeline and after fewer resources have been spent help prevent these errors from surfacing for the first time further along in the project timeline, saving time and money in the end.

Every great product started as multiple prototypes that helped shape, adapt, and perfect the final product. Prototypes are essential in detecting problems, testing to see where improvements can be made, and ultimately making the final product more useful to the end user. 3D printed sand is not directed at a certain industry or a particular customer—this technology can be used by a wide range of customers from various backgrounds and industries of all levels.

Hoosier Pattern is a boundary-breaking industry leader—we take pride in elevating ourselves and our customers to top-notch solutions, meaning higher quality castings and quicker turnaround times. Contact us today to learn more or take the first step toward working with us.

3D Sand Printing vs Traditional Tooling

The Benefits of 3D Sand Printing 

Hoosier Pattern opened its doors in 1997 as a traditional pattern shop. Over 20 years later, HPI has become an industry leader as a premier pattern shop and—as of 2013—an additive manufacturer as well. Hoosier Pattern is one of the only shops in the United States that has both rapid prototyping and hard tooling capabilities. Many customers come to HPI and ask how they can determine whether to 3D print something versus having a tool built for their project.

The difference in benefits between 3D printed sand and hard tooling boil down to two factors—time and money. Hoosier Pattern's 3D printed sand molds take around ten days to craft and cost $0.13 per cubic inch. Hard tooling can take anywhere from a few weeks to several months to complete and costs can climb to thousands of dollars.

On the surface, 3D printing looks like the way to go for every project. However, some projects are better suited for sand printing and some for hard tooling depending on the elements and goals for the project itself. But how can it be determined which method best fits your particular needs? We may have the answers you’re looking for.

When to Use 3D Printing

Prototyping

Sand printed molds and cores can only be used once, which makes them the perfect option for prototypes. If you have more than one design for a potential part, prototyping can be used to determine which mold or casting is the best option. All of the designs can be sand printed quickly, simultaneously, and at a cheaper cost. Each mold will be individually identified, which prevents confusion when it reaches the customer. Since all 3D printed sand parts start with a CAD file, parts can also easily be tweaked and re-printed.

Low Volume Production

The term “low volume” can be defined differently by every company. We define “low volume” as anywhere from 10-500 units per year. It may not be the best choice for a company to invest in the traditional tooling process if a part will only be used for a short amount of time. Sand printing may be the best option for smaller or temporary projects.

Strict Deadlines

Sand printing is the best choice when projects require a fast turnaround. At Hoosier Pattern, many of our employees have a foundry background, so we understand how critical deadlines can be. Our standard turnaround time for 3D sand prints is 10 days. This is 10 days from the time the order is placed to the time the project will be back on the foundry floor.

Our 10-day turnaround time has changed the game for many of our customers. In the past, it could have taken several months for a tool to be completed and reach a foundry. After we receive the CAD file, we plug it into a job box. Our job box is roughly the size of an average refrigerator and takes 20-22 hours to print. Because this turnaround time is so fast, we are sometimes able to do rush orders. Our employees do everything they can to ensure a customer has their product when they need it.

Geometrically Complex Parts

It's not uncommon during the process of conventional patternmaking for engineering changes to appear. Even the smallest change can pose a problem to the castings once the tooling has been produced. Since 3D printed sand begins with a CAD file, engineers are able to design and create geometrically complex casting castings to be manufactured the way they were intended to be.

Compromises don't need to be made in order to have high-functioning manufacturability while maintaining a low cost.

When to Use Traditional Tooling

High Volume Production

Although 3D printed sand molds are more cost and time effective, there are project scenarios in which traditional tooling is a better fit. For example, it doesn't make sense to have single-use molds made for a part that is going to be produced thousands of times—in the long run, a traditional pattern is going to be more cost efficient.

Tool Life

3D printed sand molds and cores can't compete with the lifespan and durability of a hard tool. While 3D printed sand is made for one-time use instances, hard tooling molds are made to withstand thousands—or even hundreds of thousands—of uses.

Still wondering which process is right for you? Our engineers at Hoosier Pattern will help you make the best choice for your specific needs. We will be honest with you and let you know whether your project is best suited for 3D sand printing or traditional tooling.

Contact us today to learn more about our process and how we can use our expertise to benefit your business.

HPI Plays a Part in NASA Student Launch Program

The NASA Student Launch Program is a year-long engineering design program that allows college teams to work right alongside NASA engineers to build and launch a model rocket to a height of one mile. Each year students design, build, and test the model rocket capable of reaching 1 mile, while also carrying a scientific payload. This program also features a series of reports that must be submitted to NASA that go through the engineering design process for the team. 

 

Below is an interview with a student at York College of Pennsylvania, Kyle Abrahims about the project and how HPI played a role in it. 

What are the specifics for the rocket for 2017?
​On the rocket for 2017, we will have an automated rover payload that will be carried during flight. This rover will need to know when it is launched and when it has reached its' target (the ground after flight). Once it reaches the ground, it will sense this change and move automatically via electronics a certain distance away from the rocket. Once it has moved 10 feet, it will open up a set of solar panels from which energy will then be collected.

When designing the rocket for this year we wanted to build something different and unique. Normally a model rocket would have fins (for flight stability or to maintain a straight flight), but these fins are normally epoxied (strong adhesive) to the rocket tubing. This creates a problem if a fin breaks, because now the entire back tubing must be replaced in addition to the fin that is broken. The fin-can that we designed in CAD is designed to take the place of these fins. They function the same, but now if a fin were to break, we can easily replace it in a matter of seconds, rather than in a matter of days (epoxy takes a while to dry)

 

How many people are working on this project? (how many people are on the team, what is your role)
There is a total of 10 students working on this project. All attend York College of Pennsylvania for Mechanical Engineering and are hoping to work in the racing and aerospace industries after graduation. My role is the team captain (basically I oversee everything and make sure that everything is getting done correctly and on-time). But I am involved in every aspect of the project and I love it.

 

How did you hear about Hoosier Pattern? What made you want to work with them? What was the obvious advantage?
I race a sprint car in Central Pennsylvania as well, so I attended the Performance Racing Industry Show in Indianapolis and met the team at the show. The team was super friendly and they said that themselves and their boss were willing to help out college students, which for us is amazing and very much appreciated as we do not have a very large budget compared to some of the other universities competing. (Other schools include: MIT, Vanderbilt, Penn State, NC State, Florida University, Cornell, exc.)

The obvious advantage was the customer service and the help that I received from the start! It was super helpful and helped our team get going immensely!

Was there a problem/issue that HPI helped solve or make your project possible? How long were you looking for a solution?
We were looking for a fin-can solution for about a month and could not find any company willing to help us out with our design parameters. The print is rather large which also played a role, but HPI helped make our project possible by allowing us to transform my idea and Solidworks’ design into a tangible product which was amazing and I am forever thankful for the help that I received!

 

A huge thank you to Kyle and the rest of the team at York for reaching out to HPI and allowing HPI to be apart of this project. Good Luck to you and your team on the rest of the school year!

Local Students Pour Castings Using 3D Printed Molds

Recently, the Area 18 Precision Machining class at South Adams High School poured their own castings from 3D printed molds printed with HPI’s sand printers.

The South Adams / Area 18 Precision Machining classes prepare students for going straight into their machining careers. Several of our employees at HPI are graduates of this class. Past graduates include Tony Uhrick, Ryan Seddlemeyer, Phillip Bauman, Jon Dathe, and Kyle Rittmeyer. Advisory board members from Hoosier Pattern include Keith Gerber and Ryan Seddelmeyer, and Todd Yoder.

The graduates of this class can earn both NIMS (National Institute of Metalworking skills) certifications and college credit, but most importantly, they are ready to begin their careers in a real-world machining/manufacturing company.

The South Adams Precision Machining class begins the first year with an introduction to shop safety, shop math, and basic hand tools. While the first “bench work” project is starting, each student gets an introduction to CNC (computer numerical controlled) machining by using a CAM system to design and program a polished aluminum nameplate for their lockers. After that, it is back to the manual machines to get a good machining foundation on manual lathes, mills and surface grinders. By the end of the first year, the students begin to get more experience programming and setting up basic parts on their 6 CNC machines. (3 of the machines were donated by HPI).

During the second year class, students completely design, engineer and manufacture a complex assembly from scratch. This year, the student designed a double acting steam engine with variable timing. The students worked together as a team to produce a working model in SolidEdge of their own design. Once the design was finalized, the students created industry level blueprints for each part along with inspection sheets. After that, the students will take all that paperwork they created as a team and machine all the parts individually and leave with a working engine by the end of the school year. The column/crankshaft support is the part that the students worked with HPI to have sand printed molds made for.

Back in January, Mr. Jerod Dailey’s class poured their castings using HPI’s molds. Lars, Mason, Chandler, Keaton, Kegan and Bailey got some real hands on training in handling molten aluminum as well as how to safely pour it and produce a quality casting. Below are some pictures of the class as well as some of the student’s thoughts on the project.

 

1st and 2nd are of the parts they poured – there are two parts to a pour, each one will make a column for the 17-18 engine project that the students designed. Once they are cut apart, there are still 4 holes and 2 bearing bores that will be machined.

 

The material that they melted that was donated by FCC Adams and they used about 8 pieces for this first pour. 4 more pours to go plus any green sand casting they do. The class took their scrap parts and cut them into 4 pieces to fit in the crucible

 

Last picture are the molds that Hoosier Pattern made for us with the 3D Sand Printer

 

“It was really interesting to pour molten aluminum. It was neat that at really high temperatures that metal will flow as easy or easier then water. I thought it was going to be pretty light weight but when all the aluminum was melted it was actually pretty heavy. So thank you for the material and for donating the molds to us so that we could experience casting for the first time."

Keaton A. (Adams Central)

 

“Pouring our molds was very interesting and fun because we got to see the aluminum melt and turn into liquid form which I have never seen. This was my first time I have ever poured aluminum and I think it would be cool to do more often. Thank you for donating the molds to the class so we could have the opportunity to pour our own part for our class project.”

Chandler S. (Adams Central)

 

“Thank you for the molds that you made for us. This was the first time I have poured aluminum and it was one of the coolest experiences I have had in this class. I was surprised by how easily it poured into the mold. I hope I can defiantly do this again sometime.”

Lars I. (South Adams)

 

 

When To Use 3D Printed Sand

In the metal casting industry, two basic pieces are needed: a mold of some sort and a foundry to pour the mold. A traditional pattern shop supplies the pattern while a foundry packs sand around the pattern to make the mold. From there, the mold is poured resulting in a casted part.

Hoosier Pattern fits the bill of the traditional pattern shop, but our expanded capabilities give us a competitive edge with the addition of our in-house 3D sand printer. By printing ready-to-pour-sand molds, we are able to bypass the tooling, possibly saving our customers time and money.

Since purchasing a 3D sand printer and having it in our facility since 2013, HPI has made strides within new and diverse industries. The possibilities with sand printing are almost endless and with the HPI team, we try to make every "out of the box" concept a reality.

We are always looking for new customers and ways to solve problems within the industry. When talking with new and potential customers we are often asked questions like the following:
 

                "How do we know when we should use 3D printed sand for our projects instead of using traditional foundry tooling?"

                "What are the advantages of sand printed parts?"

                "How would using 3D sand printing benefit my project?"


Since 3D sand printing is still a fairly new process in the industry, it's important to give our clients a detailed overview of what to expect when starting a new project with this process. If we had to sum up the benefits of 3D sand printing in a few points, we'd be sure to hit on the following:

Perfect for Prototypes

Sand printed molds and cores are printed from a CAD file and are for one-time use. This process makes printed sand molds and cores ideal for prototyping parts. CAD files can be altered in a very timely manner, allowing for quick changes to the design if needed. Customers are able to avoid paying for tooling that is produced and priced to be used hundreds or thousands of times.

 

Multi-Piece Core Assembly With A Single Printed Core

Eliminate multi-piece core assemblies by printing a single “merged” core to eliminate mud joints and improve the accuracy of the core.

 

Easy to Manufacture

In the world of pattern-making and design, it's not uncommon for engineering changes to pop up. In traditional pattern-making, these changes no matter how small can pose a problem once the tooling has been produced. Since our 3D sand printed molds and cores are printed from a CAD file, the customer is able to create and design geometrically complex castings to be manufactured with ease. Designs don't have to be compromised in order to meet low-cost, high-functioning manufacturability.

 

It's Fast

The conventional method of building a pattern can take anywhere from weeks to months. HPI's standard lead time for 3D printed sand is 2 weeks, with the option of 1 week and 3 days expediting available. This turnaround time includes printing, cleaning and packaging the parts, followed up by sending the item to a foundry to be poured.

 

The printer at HPI has a job box the size of 70" x 39" x 27" and prints about 1.3" every hour. A full job box takes anywhere from 19-23 hours to print, making for an incredibly quick turnaround.

 

Hoosier Pattern is rooted in traditional pattern-making and will continue to produce high-quality traditional foundry tooling. However, the 3D sand printer opens opportunities to work with clients who need smaller quantities and quicker turnarounds. It is a tool in the HPI toolbox used to help customers with projects and set us apart from the competition. In fact, Hoosier Pattern is one of the few shops in the United States that owns and operates its equipment in-house that supplies production sand cores. 

 

Our in-house printers and dedicated team members work diligently and consistently to bring the best products to our customers. We will continue to raise the bar within the industry and always work to improve our company and our products because our customers deserve the best. 

Gearing Up For Casting Congress 2017


Next week, AFS 121st Metalcasting Congress kicks off in Milwaukee, Wisconsin and Hoosier Pattern will be showcasing on the sold out exhibit hall floor. The AFS Metalcasting Congress is the industry's largest conference and trade show that brings together suppliers, foundries, and casting customers alike. The conference brings endless opportunities for networking, promoting, and educating people on a larger scale about Hoosier Pattern’s role in the industry.

Dave Rittmeyer, Steve Murray, Alyssa Corral and Brandon Fourman will be representing HPI at the show. They will be a part of panel discussions and be at booth #510 in the exhibit hall.

 

Dave Rittmeyer


Having just celebrated his 18th work anniversary with Hoosier Pattern, Dave is a familiar face within the industry. As a journeyman pattern-maker with more than 2 decades in the trade, as well as being HPI's additive manufacturing supervisor, Dave has a well-rounded knowledge of the industry. At the conference, he will be part of a foundry technology panel on Tuesday morning in room 203AB at 9:15 AM. He will be discussing 3D printed sand and how to apply the technology to projects for customers. When Dave isn't at Hoosier, he enjoys riding his Harley, fishing, and spending time with his wife and 4 sons.

Steve Murray

As a journeyman pattern-maker with a passion for the foundry and metal casting, Steve has been a huge asset to the team with his knowledge of the trade and additive manufacturing. Instead of having a desk in our facility, Steve is normally out traveling and educating potential customers, foundry men, engineers, and casting designers finding the best solution to their casting needs. Steve will be part of a panel on Tuesday afternoon at 1:30 PM in room 202AB discussing additive manufacturing. When Steve isn't traveling for work, he is spends time woodworking or hanging out with his wife and grandkids.

Alyssa Corral


Entering into her third year at Hoosier Pattern, Alyssa Corral specializes in all marketing and social media efforts, along with producing and managing website content. Alyssa is always looking for new ways to tell Hoosier's story within various industries, especially by attending trade shows and participating in that way. When she isn't on the clock, you can find her at record stores looking for Beatles records, at a concert, or reading a book somewhere.

Brandon Fourman

Brandon Fourman is an apprentice pattern-maker and has been with HPI since 2013. He started in the saw department and was accepted into the apprentice program in June of 2015. Brandon will be a new face in the trade show booth, but is very knowledgeable and will be a great asset to the show team for the Metalcasting Congress. In Brandon’s free time, he is usually hunting, fishing, or on a golf course.

 

HPI started in 1997 as a pattern shop and has seen continual growth within the pattern industry by expanding our capabilities to what they are today. We hope you’ll stop by our booth at the conference and check out photos and videos of our facility, as well as sample projects we have worked on. HPI's booth will have information and literature about all services that we offer including foundry tooling, 3D printed sand, and plastic/ABS printing. HPI is proud to be a part of a community and industry that is so vital to everyday life. We look forward to exhibiting and meeting with current and potential customers, as well as seeing which direction the industry is heading in.

Never used or even seen 3D printed sand? Hoosier's booth will be filled with 3D printed sand molds and cores, as well as castings that were cast from 3D printed sand. Everything from small castings to large castings, all made from 3D printed sand in a range of alloys. All of our 3D printed sand is printed in-house with one our ExOne S-Max™ printers in the shop. Have a project or idea that could possibly use 3D printed sand? Stop by the booth. We'd love to hear your idea and discuss your options. See you next week!

3D Printing for Pump Components and TPS 2016

Next week, Dave and Alyssa will be at the 45th Turbomachinery and 32nd Pump Symposia in Houston. TPS is the premier training and networking opportunity for professionals in both pump, turbomachiniery and related industries. Last year, TPS attracted more than 5,500 people and 350 exhibiting companies from 48 countries. HPI fits into this show because here at HPI, we are able to manufacture parts for a wide variety of industrial pumps and commercial pumps, including: centrifugal pumps, water and sewage pumps, turbine pumps, transfer pumps, fluid flow pumps and more! Pump castings can be delivered with pinpoint accuracy in just days with our advanced technology and multi-industry expertise. 

 

Why Use 3D Printed Sand to Make Pump Components?

Timing:
In a maximum of 2 week's time from the receipt of your purchase order, you can have a sand mold of your pump component ready to ship to the foundry of your choice. Don't have a foundry in mind? No problem. We have a network of foundries we work alongside to produce high quality castings for our customers. The sand molds are ready to make a casting with no waiting for foundry tooling to be made, refurbished or changed to the latest engineering level. Castings get made faster and into your customer's hands quicker. This process is ideal for new prototypes, low volume pump requirements, and legacy pumps or their components.

Cost:
The cost for 3D printed sand components, sand molds or sand cores is $0.13 per cubic inch. This is the cubic inch of the CAD build box of the sand component. No extra charge for complex designs or geometries. The only extra charges are if you want it NOW, like the next day NOW. Yes, we can do that. 

Design:
Complex geometries of your parts do not equate to higher costs to make your castings. You do not need to sacrifice your design for manufacturability. Complex core designs are 3D printed as one piece, thus reducing or eliminating assembly errors and foundry casting defects. No internal fins or mismatches. 3D printed foundry molds do not need traditional parting lines and flask sizes. This gives the foundry the freedom to gate, place risers, and feed the casting in the best way possible to produce the optimal casting. The freedom of pump design combined with the freedom of the foundry to manufacturing a pump component casting is a huge advancement for the pump industry. 

Complex pump component castings produced quickly and at a known cost is why manufactures are turning to 3D printing as a solution to pump casting problems.

 

  

See you next week, Houston! If you are not going to be at TPS 2016, but are still interested in 3D printed sand for your pump project, please contact us. 

To request a quote on your pump project: quote@hoosierpattern.com

HPI Receives Solution Award

In June, Hoosier Pattern was awarded a Global Supply Chain SOLVE Solution Award by Emerson Process Management. Emerson gives this award to outstanding project owners that impact the way their supply chain works. The objective of The Global Supply Chain's Solution Award is to encourage and recognize people's efforts on providing supply chain related solutions to the business. In line with the SOLVE vision (defined below) there must also be value added to the business via enterprise engagement, financial improvement, delivery improvement and asset management improvement. The Solution Award is going to be given once in a calendar year and/or completion of a Solution project. The nominees for the award are individuals and/or teams inside and outside of the Global Supply Chain's organization and recipients are chosen by Global Supply Chain leadership, in alignment with Enterprise Leadership. Hoosier Pattern is the only external supplier to receive a Solution award. 

 

Global Supply Chain's vision of SOLVE includes: 

S - Solution provider on: delivery challenges, dwell time and asset management targets

O - On-time delivery improvement with all suppliers achieving 95% OTD to request date

L - Lead time reduction: work with suppliers to shorten lead-times demanded by KOB's

V - Value add to our financial position: deliver supply chain related financial targets on NMI, DPO, ES

E - Enterprise engagement via perfect execution: driving regional actions in line with global Enterprise objectives 

 

HPI is honored and thrilled to be the recipient of the SOLVE award. Our employees take pride in their work and the quality of everything that leaves our facility reflects that. We will continue to strive to be an industry leader in 3D printed sand, constantly working to be better and finding ways to do things differently. The HPI team is mindful of the need to compete for excellence and will always work together as one to keep that goal in mind. We look forward to our future with Emerson and continuing to make that partnership a stronger one. 

 

HPI’s First Webinar!

Hoosier Pattern put on it's first webinar Wednesday May 25th. Titled, An Introduction to 3D Sand Printing for the Metalcasting Industry, the webinar was presented by Steve Murray and Dave Rittmeyer of Hoosier Pattern. Both Steve and Dave have been in the trade for over a combined 50 years. Both Journeymen are well educated in additive manufacturing and have spoke at multiple events about this topic. 


Steve Murray and Dave Rittmeyer of HPI

Incase you missed it, we had the webinar recorded and it is available to watch here and on our YouTube channel.

If you have any additional questions regarding the webinar, want to receive any of the literature mentioned, or would like to talk to the presenters themselves, feel free to contact Steve or Dave. 
Steve Murrray: steve@hoosierpattern.com
Dave Rittmeyer: dave@hoosierpattern.com

 

Case Study: Strand Design

HPI Case Study

 

Customer: Strand Design; Chicago, Illinois
Part: Fourneau Bread Oven
Batch Size: Prototype to Tooling 
Material Cast: Gray Iron 


What it is: 

The Fourneau Oven is a cast-iron container that goes inside of an oven. It is designed to make bread using the no knead method made famous by Mark Bittman of The New York Times. The device's walls heat the dough evenly and the enclosed cooking space traps the steam from the baking bread, creating a golden, crispy crust.

Customer Challenge: 

Strand Design came to HPI many different times with multiple design molds for the oven that weren't possible due to the way it was designed. The designers asked HPI to reengineer the molds to add proper gating and risers to have it done within a short time span. Once the design was tested, it was noted that it was too heavy as one solid piece. 

Solution: 

As designers, Strand Design did not want to hand over the design work to a third party. So, Hoosier Pattern worked side by side with the owners to redesign the oven to make this project a reality. The final design was broken up into parts so the container was easier to handle. The 3D printed sand molds were printed within a really tight schedule and came out perfectly.

300

Conclusion: 

Ultimately, Strand Design opted to not only have Hoosier Pattern print the prototypes for the Fourneau Oven, but they decided to have Hoosier Pattern complete the tooling for it as well. Strand Design's Fourneau Oven is just one of the many projects that proves Hoosier Pattern is the one stop shop for prototyping projects that will ultimately need tooling in a short amount of time. 

HPI Competitive Advantage: 

Hoosier Pattern works very closely with all customers enabling our designers to make changes on the fly to keep all projects moving forward to meet customer's needs and deadlines. Hoosier Pattern's 3D sand printer operation is effective and more practical for quick turnaround times. 

 

It was a very exciting mail day when we recieved our own Fourneau Ovens. Congratulations, Strand Design on this awesome product you have made. Hoosier Pattern is excited and proud to be apart of it. Happy Baking! 

                

To order your own Fourneau Oven click here.

Call us or fill out our contact form today to
receive a free quote for your next project.

Call (260) 724-9430 Contact Form